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Abstract.    The focus of the present study is to investigate both local and global behaviour of a precast concrete 
sandwich panel. The selected prototype consists of two reinforced concrete layers coupled by a system of cold-drawn 
steel profiles and one intermediate layer of insulating material. High-definition nonlinear finite element (FE) models, 
based on 3D brick and 2D interface elements, are used to assess the capacity of this technology under shear, tension 
and compression. Geometrical nonlinearities are accounted via large displacement-large strain formulation, whilst 
material nonlinearities are included, in the series of simulations, by means of Von Mises yielding criterion for steel 
elements and a classical total strain crack model for concrete; a bond-slip constitutive law is additionally adopted to 
reproduce steel profile-concrete layer interaction. First, constitutive models are calibrated on the basis of preliminary 
pull and pull-out tests for steel and concrete, respectively. Geometrically and materially nonlinear FE simulations are 
performed, in compliance with experimental tests, to validate the proposed modeling approach and characterize shear, 
compressive and tensile response of this system, in terms of global capacity curves and local stress/strain distributions. 
Based on these experimental and numerical data, the structural performance is then quantified under various loading 
conditions, aimed to reproduce the behaviour of this solution during production, transport, construction and service 
conditions. 
 

Keywords:    precast panel; composite panel; steel profile; shear response; void shape; FE models; interface 
elements 

 
 
1. Introduction 

 
Precast concrete panels have been used since decades as a common cladding solution to enclose 

the exterior façade of structural systems, being the desired architectural expression provided, in a 
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practical and economical way, by special shapes and uniform finishes (PCI, 2007). This applies 
even to a greater extent to the case of multi-layered or so-called sandwich panels, which consist of 
thermal and/or noise insulating layers protected from external environmental conditions by a series 
of external and internal reinforced concrete (RC) layers. Usually, they fall in the category of 
non-structural components and, in the past, the design of such systems was only based on concepts 
of “good-design-practice”, out of specific prescriptions in Codes and/or Standards. As a 
consequence, major seismic events, in the Italian territory, have shown their poor performance 
(Liberatore et al. 2013, Magliulo et al. 2014, Bournas et al. 2014, Belleri et al. 2014), reaffirming 
seismic vulnerabilities emerged in other destructive earthquakes (Adalier and Aydingun 2001, 
Sezen and Whittaker 2006, Ghosh and Cleland 2012, Toniolo and Colombo 2012). Under 
operational conditions, these panels resist self-weight and out-of-plane wind-induced forces to be 
transferred to the supporting structure. Without the ability to accommodate relative displacement, 
panels attract unintended forces, causing them to fail and fall from the structure (Brunesi et al. 
2015a), particularly when associated with high out-of-plane slenderness, as no lateral restraint was 
provided in correspondence to columns and RC spandrels, in old buildings. 

The severe damage suffered as a consequence of inadequate stiffness, strength and ductility of 
these systems and/or insufficient connections detailing implies the need for specific procedures to 
assess their capacity and mitigate intrinsic structural deficiencies. In the last two decades, a better 
understanding of the importance of the façade panels in the global structural behaviour and design 
has been developed (Henry and Roll 1986, Charney and Harris 1989, Taghavi and Miranda 2003, 
Hunt and Stojadinovic 2010, Brunesi et al. 2015a). Non-structural components have more recently 
attracted significant research efforts to characterize their response under seismic loads, 
experimentally (Mosqueda et al. 2009, Retamales et al. 2011, 2013, Petrone et al. 2014) and 
numerically (Villaverde 2006, Medina et al. 2006, Wanitkorkul and Filiatrault 2008), thus showing 
them to play a relevant and active role in the response and, therefore, design of the entire building, 
in terms of both structural periods and lateral displacements. 

Different building typologies and configurations may be differently affected by different façade 
systems and technologies, according to stiffness and strength of panel-to-structure connections and 
cladding solution itself which, for composite systems such as sandwich panels, may be not so easy 
to estimate, even if they represent crucial parameters for their design or the assessment of existing 
systems, for what concerns damage pattern and related repairing costs. In light of this scenario, the 
aim of this study is to characterize both global and local behaviour of a precast composite concrete 
sandwich panel, from an Italian supplier, under shear, tensile and compressive loads, by a series of 
detailed 3D brick FE models, based on nonlinear fracture mechanics. Geometrically and materially 
nonlinear analyses have been performed on both prototypes, representative of this technology, and 
their subassemblies. Nonlinear constitutive laws have been calibrated on preliminary experimental 
characterization tests of panel components and, then, numerical simulations have been carried out, 
on whole specimens, in compliance with experimental observations used to validate the modeling 
approach proposed. Finally, structural performance is assessed during manufacturing and erection 
stages, as well as service conditions, which still remain crucial aspects for their design, in areas of 
moderate seismicity. 
 
 
2. Behaviour in shear 

 
The panel investigated consists of external and internal RC layers, coupled by a series of 
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cold-drawn steel profiles with an intermediate thermal insulating layer of polystyrene, as shown in 
Fig. 1, where a schematic of this composite technology, with its key components, is provided. 
Hence, a specimen, whose geometrical characteristics are summarized in the following, is 
constructed using this solution, and then tested in shear to evaluate the ability of the transverse 
C-shaped steel profile to couple the two RC layers. The stress-strain constitutive laws 
implemented for steel and concrete are based on well-known models calibrated in accordance with 
the results of pull and pull-out tests performed on steel ties and steel ties-concrete blocks, 
presenting material properties representative of those used for the prototypes tested experimentally. 
Details concerning test setup and procedure, as well as a brief description of specimens, materials 
and reinforcement layout, will be given in the following. 

 
2.1 Experimental investigation of panel subassemblies 
 
Shear tests were conducted on a small portion of the panel under investigation. In particular, the 

reference specimen consisted of a 600x1000 mm panel subassembly, characterized by 80 mm thick 
internal and external concrete layers, reinforced by means of a 150x150 mm grid composed of Ø5 
bars. To couple these two RC blocks, two 500 mm long steel profiles were embedded into them, as 
presented in Fig. 2. The mean 28-day concrete compressive strength (fc) was measured to be equal 
to 35 MPa, whilst the steel profile, cold-formed from a stainless steel sheet named in the upcoming 
discussion as “ECO210 INOX”, showed mean tensile strength of 326 and 510 MPa, at 0.2% strain 
(f0.2%) and at ultimate conditions (fu), respectively. Traditional B450C mild steel was used for mesh 
reinforcement. Insulating polystyrene layers were conservatively assumed to add any contribution, 
in terms of bearing capacity, and, hence, omitted in the specimens tested. 

The reference prototype was subjected to in-plane shear deformation restraining the internal RC 
layer, at top and bottom, whilst two actuators were used to apply a monotonically increased tensile 
force at the top of the external concrete block. A set of stiff beams was provided along the edges of  
the fixed side to prevent any undesirable local mechanism, additionally permitting a more uniform 
transfer of the load path. The experimental test setup is schematized in Fig. 2. 
 
 

Fig. 1 Schematic of the sandwich panel analyzed
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Fig. 2 Schematic of the specimen and experimental test setup 
 
2.2 Nonlinear monotonic solid FE analyses 
 
The experimental loading protocol, applied in displacement control, was reproduced by a series 

of detailed 3D numerical models developed within a well-established general purpose FE package 
MIDAS FEA (MIDAS 2010). Six-node brick elements were used to mesh concrete layers and steel 
profiles, whilst one-dimensional embedded elements and two-dimensional interface elements were 
assumed to represent mesh reinforcement and steel profile-concrete layers interaction, 
respectively. 

Nonlinear fracture mechanics was proven to be a transparent and effective manner for modeling 
the inelastic behaviour of concrete in several applications (Hung and El-Tawil 2010, Hung and Li 
2013, Hung et al. 2013, Biscaia et al. 2013, Le Nguyen et al. 2014, Pecce et al. 2014, Brunesi et al. 
2015b, 2014a). In this work, the total strain crack (TSC) model, implemented along the lines of the 
modified compression field theory (Vecchio and Collins 1986), was adopted taking advantage of a 
diffuse smeared fixed cracking approach able to simultaneously account for both normal and shear 
stresses on potential crack surfaces. The models proposed by Thorenfeldt et al. (1987) and Hordijk 
(1991) were used for uniaxial compressive and tensile behaviour, respectively. Figs. 3 and 4 
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Fig. 3 Compressive stress-strain relationships for TSC model
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Fig. 4 Tensile stress-strain relationships for TSC model

 

present their calibration, in accordance with CEB-FIP Model Code (1990). Two compressive 
strengths (i.e. 15 and 35 MPa) were assumed as representative of concretes with different aging 
used for pull-out and shear tests. In addition, a comparison is provided between an exponential 
softening curve and Hordijk model, showing the latter to lead to slightly more conservative values 
of tensile strength (ft) for the same crack strain. Both confinement and lateral crack effect were 
accounted in the series of numerical simulations, according to Vecchio and Collins (1993). 

A classical Von Mises yielding criterion, combined with isotropic strain hardening (Venini and 
Nascimbene 2003), was adopted to include material nonlinearities of both steel profiles and mesh 
reinforcement. The assumed true stress-strain constitutive laws (Girão Coelho 2013, Brunesi et al. 
2014b, 2015c) were calibrated on properties from the characterization tests performed by the 
producer, for both stainless and mild steel. 

Two-dimensional zero-thickness interface elements were introduced to represent concrete-steel 
interaction, through a bond-slip constitutive model able to reproduce, in a phenomenological sense, 
formation and evolution of transverse and longitudinal cracks in the vicinity of the embedded steel 
material. Based on total deformation theory, this approach expresses tractions as a function of total 
relative displacements. In particular, the relationship between normal traction and normal relative 
displacement is assumed to be linear elastic in compression only, whereas the relationship between 
shear traction and slip is imposed to be a cubic polynomial function, according to Dörr (1980) (see 
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Fig. 5). 
An energy-normalized convergence criterion, with a threshold set equal to 10-3, was adopted to 

equilibrate loads through an incremental iterative procedure; Newton-Raphson algorithm was used 
to perform the implicit solution strategy. Hence, even if classical fiber-based models (Spacone et al. 
1996) are effective and time-saving solutions to assess the global response of different types of RC 
structures (Casarotti and Pinho 2006, Mpampatsikos et al. 2008, Brunesi and Nascimbene 2014), a 
high-definition FE model is an attractive tool for investigation of collapse mechanisms, being able 
to predict stress-strain distributions and the related evolution of damage patterns. In the following, 
these local quantities, crucial in interpreting failure modes, will be examined and discussed, after a 
preliminary validation of the numerical approach proposed. 

 
2.2.1 Calibration of FE models 
To validate the calibration of the constitutive laws assumed, two preliminary experimental tests 

on panel components were numerically reproduced. First, static pull tests were performed on a Ø4, 
250 mm long, stainless steel AISI 302 tie. In Table 1, its geometry is shown, as well as a schematic 
of the experimental test setup. A mesh of six-node tetrahedrons was swept to materialize its double 
S-shaped end, and perfect boundary conditions were introduced to restrain its gripped parts both at 
top and bottom, thus allowing only 210 mm of its length to axially deform between the jaws of the 
testing apparatus. A detail of FE mesh and boundary conditions is provided in Table 1, as well as a 
comparison between experimental and numerical capacity, at ultimate conditions. Similarly, Fig. 6 
compares FE and experimental observations in terms of tensile load-axial displacement curves and 
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Table 1 Ultimate tensile capacity of the stainless steel tie from tests and numerical model 

Tie Experimental Test Numerical model 
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Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels 

Table 3 Shear capacity vs. demand on a steel profile as part of the panel 

Analysis type Steel grade Fs,y[kN/m] Ms[kNm/m]
Fs due to self-weight of  

the external RC layer [kN/m] 

Strip S1 
Mild steel 

S250GD+Z 

f0,2% = 271 MPa 

23 13.8 

 3.0÷4.0

Strip S2 48 2.9 

 3.7÷5.0

Subassembly 

600x1000 mm 

Stainless steel 

ECO210 INOX 

f0,2% = 326 MPa 

22 3.1 

 4.9÷6.6

 

 
profile itself, which was conversely shown to exhibit a gradual evolution of its deformation pattern. 
Moderate out-of-plane distortions were predicted both experimentally and numerically until global 
collapse was undergone. Concrete experienced no damage except minor cracking in small volumes 
adjacent to the profiles, where stress levels slightly less than peak tensile strength were still able to 
be transmitted across the cracks and, in addition, reinforcing mesh was found to behave elastically, 
at negligible stress rates of approximately 9 MPa. 

To further confirm this behaviour, the shear response of a single profile was analyzed, assuming 
boundary and loading conditions representative of those applied to the subassembly. Geometry and 
material properties remained unchanged, while the portion embedded into the internal and external 
concrete layers were restrained and loaded, respectively. A uniform displacement pattern was used 
to test the stainless steel profile in shear, thus verifying the role played by the steel profile-concrete 
blocks slippage to be almost negligible for this composite technology. As observed in Fig. 13, Von 
Mises stress distributions in close agreement with those collected in Fig. 12 were obtained in terms 
of path and intensity. Almost identical trends are shown by the shear force-displacement curves for 
global and simplified FE models, presenting a mismatch within 1%, for what concerns the ultimate 
shear capacity (i.e. 37.5 kN vs. 37.9 kN). As a result, perfect bond between the two components of 
this system took place within the entire displacement range. 

Sensitivity of shear response to material characteristics and concrete layer-to-layer distance was 
then quantified by considering two representative stripes, namely “S1” and “S2”, extracted from a 
10x2.5 m panel, whose six profiles, spaced of 2 m, were composed of mild steel (f0.2% = 271 MPa). 
A schematic of the panel selected and details of the high-definition FE mesh prepared are provided 
in Fig. 14. Geometry and hole-pattern of the profiles were kept constant, while their embedment is 
different, being the two segments placed at inner and outer positions, respectively. In detail, 
block-to-block clearance was equal to 160 and 60 mm for S1 and S2, respectively. Boundary and 
loading conditions were imposed at the lateral sides of the 2.5 m long stripes considered in order to 
inhibit any secondary mechanism and, hence, determine the potential for shear force transfer of 
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these two mild steel profiles, when subjected to an in-plane shear condition equivalent to that 
detailed for the 600x1000 mm prototype. 

The principal tensile strain and Von Mises stress distributions obtained for the two segments are 
compared in Figs. 15(a) and 15(b), respectively. In particular, S1 showed a failure mechanism in 
close agreement with that predicted for the specimen tested, since the two prototypes were 
characterized by different steel grades but similar layer-to-layer distances. Therefore, collapse 
mode was proven to be independent on material properties, while the embedment configuration 
was observed to play a more significant role in the shear response of this solution. When compared 
to S1, S2 provided a more than doubled (i.e. 2.3) shear capacity and additionally a less ductile 
behaviour showing larger strain demands concentrated in a significantly smaller portion of the 
profile; these observations are confirmed by the capacity curves graphed in Fig. 16. Initial stiffness 
was approximately four times higher than S1 and yielding occurred at an anticipated relative 
displacement, resulting into a stiffer post-yielding branch, hardened in character. Nonetheless, S1 
was roughly 33% more ductile, being the profile freer to deform and plastic strains to distribute in 
a larger part of it. In addition, a highly non-symmetrical strut-and-tie mechanism was observed to 
develop and evolve as a consequence of the embedment configuration assumed in the case of S2. 

Furthermore, the capacity curves obtained for the three case-studies considered (see Fig. 11-16) 
were processed to determine the shear force per meter, normalizing the capacity with respect to the 
total length of the profiles, and finally plotted in Fig. 17 to compare the responses predicted for 
different steel grades and embedment conditions. Rather than ultimate, the yielding condition may 
be assumed as a conservative design target and, hence, Table 3 was prepared to collect the yielding 
shear strengths per meter provided by each solution. Bi-linear approximation, based on a 
constant-energy idealization, was used for the computations. Assuming the sandwich panel to be 
attached to the supporting structure through its internal concrete layer only, a comparison is given 
between the capacity and the demand due to the self-weight of the external RC layer, for various 
configurations (i.e. number) of intermediate transverse profiles. Even if only two intermediate 
profiles are used on a 10 m wide panel, the shear demand-to-capacity ratio is still much less than 
unity. In addition, the maximum bending moment beyond which the steel profiles yield in shear 
and are no longer able to transfer further coupling forces between the two concrete layers was 
determined for the considered conditions and summarized in Table 3. 
 
 
3. Behaviour in tension and compression 

 
To predict its tensile and compressive response, the 600x1000 mm subassembly experimentally 

tested and numerically analyzed in shear was then subjected to a set of uniformly distributed forces 
out of its plane. Arc-length method was used to solve for the nonlinear equilibrium path. The axial 
load-end shortening/lengthening capacity curves are provided in Fig. 18, with a top view sketch of 
the deformed shape under pure tension and compression (i.e. top right and bottom left side). A side 
view of the failure mechanisms occurred in the stainless steel profile is shown in Fig. 19. Buckling 
took place under both loading conditions, but the inner curvature at the extremities of the C-shaped 
profile (see Fig. 2) visibly mitigated its brittleness. If the prototype was loaded in tension, primary 
strain concentrations locally developed in this junction and, then, the profile opened up before high 
plastic deformations evolved at mid-stem, in correspondence to the holes, causing it to fail. Further, 
the positive effect of these notches was evident in compression either, since the collapse mode was 
characterized by a triple-hinging mechanism. The first two plastic hinges simultaneously formed at 
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Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels 

 

Fig. 17 Shear capacity per length for S1, S2 and subassembly 600x1000 mm 
 
Table 4 Compressive and tensile capacity vs. demand on a steel profile as part of the panel 

Configuration 

 

Compressive and tensile force demand due to 
self-weight of a concrete layer 3.0÷4.0 3.7÷5.0 4.9÷6.6 

Compressive strength (yielding – peak) 66.3 – 72.5 

Tensile strength (yielding – peak) 21.8 – 117.0 

 

the inner curvatures of the profile, while the third occurred at mid-stem, thus resulting into a weak, 
but stable softening branch. The comparison between capacity curves revealed yielding to occur in 
tension at smaller displacement and load levels than compression and, in addition, tensile response 
was characterized by a much larger global displacement ductility. 

As done for shear capacity, both tensile and compressive strength per meter were computed and 
collected in Table 4, where a comparison is provided with demand values due to self-weight of one 
RC layer, thus showing such profiles to behave elastically under these loading condition. 
 
 
4. Construction phases and service conditions 

 
Once assessed the performance of the profile in shear, tension and compression, an entire panel 

was modelled and analyzed under construction, production and service conditions to reproduce the 
local stress/strain state of each of its components. The 10x2.5 m sandwich panel, whose S1 and S2 
stripes were numerically tested in shear (see Section 2.2.2), was chosen to be representative of this 
composite technology; the spacing between the mild steel profiles was roughly 2 m. Boundary and 
loading conditions were prepared to simulate, in an equivalent manner, any stage considered, from 
formwork to erection on site. Further, concrete properties (i.e. compressive strength) were assumed 
according to its age at each phase of the construction process. A half or quarter of the panel was, in 
some cases, studied, given the simple or double symmetry along its axes. The prevailing numerical 
observations will be summarized in the following. 
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Numerical simulation of hollow steel profiles for lightweight concrete sandwich panels 

 

4.2 Transport and handling 
 
The stress state of the panel was then investigated during its transport and handling on site. Two 

different uplift conditions were again analyzed using symmetrical and asymmetrical loading cases, 
as shown in Fig. 21(a) and 21(b), respectively. The first configuration consisted of a set of four 
equal forces applied at one long edge with an angle of 60°, while the second was represented by a 
pair of forces assumed to be 70% and 30% of panel self-weight, in order to simulate its 
overturning about X-axis. Prior erection on site, concrete compressive strength was selected to be 
equal to 35 MPa. A half of the panel was analyzed, in the case of symmetrical uplift, while the 
entire composite system was studied for the second condition, being the loading distribution 
asymmetrical. As before, none of them made any component work beyond its elastic range. Peaks 
of the order of 10-4 were indeed observed as principal tensile and compressive strains in both steel 
profile and concrete layer. Mesh reinforcement was again predicted to carry negligibly small stress 
levels of up to 8 MPa. 

 
 

Table 5 Service conditions: maximum stress and strain in profile, concrete and reinforcement 

Load Element 

 Horizontal panel Vertical panel 

Self-w

eight 

Profile 
strains [µ] E1 = 186 E3 = -162 E1 = 1770 E3 = -1570 

stress [MPa] σVonMises = 28.2 σVonMises = 136.1 

Concrete strains [µ] E1 = 69.8 E3 = 40.7 E1 = 682 E3 = 392 

Re-bars stress [MPa] σmax = 11.1 σmin = -5.9 σmax = 5.3 σmin = -2.8 

Wind 

Profile 
strains [µ] E1 = 427 E3 = -386 E1 = 401 E3 = -370 

stress [MPa] σVonMises = 64.1 σVonMises = 82.6 

Concrete strains [µ] E1 = 106 E3 = 77.2 E1 = 75.0 E3 = 46.3 

Re-bars stress [MPa] σmax = 17.3 σmin = -18.8 σmax = 15.8 σmin = -14.4 
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in close agreement with the experimental failure mode were predicted. The high plastic 
strain concentrations observed in the profiles, as a consequence of the strut-and-tie path, 
did not cause any anticipated net fracture, whilst a gradual evolution of its deformation 
pattern was evidenced, in tests and FE simulations. Concrete was proven to experience 
no damage except minor cracking in small volumes adjacent to the profile, where stress 
levels slightly less than peak tensile strength were still able to be transmitted across the 
cracks. Hence, profile-concrete connection can be acceptably considered to be fixed. 

 Sensitivity of shear response to steel type and concrete layer-to-layer gap was assessed, 
in terms of failure mechanism and shear force-displacement curves. The collapse mode 
was found to be independent on steel characteristics, whilst a more significant role was 
played by the embedment configuration, which was observed to visibly affect stiffness, 
strength and ductility of the subassembly. 

 Buckling occurred both in tension and compression, but the inner curvature at the ends 
of the C-shaped profile mitigated the mechanism. In tension, local strain concentrations 
developed in these junctions and the profile opened up before high plastic deformations 
evolved at mid-stem, causing it to collapse. Due to these notches, a triple-hinging mode 
took place, with two hinges simultaneously formed at the inner curvatures of the profile 
and a third occurred at mid-stem, thus resulting into a weak, but stable softening branch. 
Yielding occurred in tension at smaller displacement and force levels than compression 
and, in addition, a much more ductile response was determined. 

 Under construction phases and service conditions, the series of detailed FE simulations 
showed the panel to behave elastically. The stress/strain state of each of its components 
confirmed yielding not to take place in steel profiles and mesh reinforcement. Similarly, 
no cracking was observed to occur in concrete layers for any loading phase considered. 
Up to this load level, the steel profile was demonstrated to be able to effectively couple 
the two RC layers, without exhibiting any permanent plastic deformation. 
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